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Abstract 
Methods for constructing everywhere-positive electron- 
density maps with Fourier amplitudes matching those 
for arbitrarily large sets of observed data, utilizing dual- 
function methods for maximization of entropy, are de- 
scribed. Possible strategies for utilizing these maps for the 
determination and extension of phases in macromolecular 
structure determination are suggested, and problems are 
discussed. 

Introduction 
From the earliest work on direct methods (Harker & 
Kasper, 1948) it was recognized that the fact that elec- 
tron density could never be negative implied restrictions 
on the possible phases of the structure factors for X-ray 
diffraction from real crystals. Karle & Hauptman (1950) 
put this principle on a mathematically rigorous basis by 
showing that certain matrices constructed from sets of 
structure factors (Toeplitz matrices) must be positive semi- 
definite, implying the nonnegativity of the determinants of 
these matrices and giving inequality relations among the 
structure factors. Karle & Hauptman expressed these in- 
equalities in the form of determinants, and, because of 
the rapid increase in the complexity of the expansion of a 
determinant as its size increases, they did not receive prac- 
tical use except in rather small problems. The inequalities 
can also be expressed in terms of the Cholesky factoriza- 
tion of a positive-definite matrix (Prince, 1989a), and it is 
apparent from the form of the resultant expressions that 
the restrictions must get tighter as the size of the matrix 
increases. Furthermore, because the crystal is composed 
of atoms, all structure factors must be functions of a finite 
number of parameters, so that only a finite number of them 
can be independent, and the relations among sufficiently 
large numbers of them must be exact. If the number of 
atoms in the asymmetric unit is large, a 'sufficiently large 
number' of structure factors may be a very large num- 
ber indeed! If, however, a nonnegative distribution can be 
found that gives a Fourier transform with amplitudes cor- 
responding to a set of observed reflections, all relation- 
ships involving those reflections, including relationships 
with reflections not in the set, must be satisfied. Therefore 
phases can be extended from a sufficiently large starting 
set. 
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Crystallography is only one of a number of fields in 
which the data are measures of a Fourier transform of 
a density distribution. In some of these fields, radio as- 
tronomy for example, relative phases can be measured, 
but the data never extend to infinity in transform space, 
so they are necessarily incomplete. In recent years the 
principle of maximum entropy (Jaynes, 1979) has been 
used to define a unique solution to this underdetermined 
problem. The maximum-entropy solution can be shown 
to have a number of interesting properties. The property 
that has received the most attention is freedom from bias. 
In Jaynes's terms it is 'maximally noncommittal' with 
respect to all data that are not used in its construction. 
However, the property that is most significant in the crys- 
tallographic phase problem is nonnegativity; maximum 
entropy is a sufficient (but not necessary) condition to sat- 
isfy the requirement of an everywhere-positive electron- 
density distribution whose Fourier transform agrees with 
the observed data. Therefore a procedure that finds a 
maximum-entropy distribution finds a distribution that sat- 
isfies all Karle-Hauptman inequality relationships. 

Maximum entropy has been applied to crystallography 
by Collins (1982), Wilkins (1983), Navaza (1985) and, 
notably, by Bricogne (1984). Except for Wilkins, who de- 
scribed a 'single-pixel approximation' procedure, these pa- 
pers discuss the principles of maximum entropy, but do not 
give practical numerical solutions to the problem. Collins 
& Mahar (1983) showed that maximum entropy implies 
that the density can be expressed by an exponential func- 
tion, but they also did not give a detailed solution. Livesey 
& Skilling (1985) discussed a procedure for finding the 
solution, but they did not describe their procedure in suf- 
ficient detail for a program to be written by someone else. 
Prince, Sj61in & Alenljung (1988) described a procedure 
for finding a maximum-entropy distribution under condi- 
tions of an overall 'soft' constraint, and Sj61in, Svensson, 
Prince & Sundell (1990) applied this procedure to phase 
extension in a protein. More recently Prince (1989b) de- 
scribed a more general procedure that can be used to con- 
struct a density map whose Fourier coefficients match the 
individual structure amplitudes of an arbitrarily large set of 
observed reflections. Sj61in, Prince, Svensson & Gilliland 
(1991) used this procedure to generate phases ab initio to 
produce a map of a protein that was in remarkable agree- 
ment with one computed using phases from the refined 
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structure. In this paper details of the implementation of 
this procedure are described, and ways of applying it as a 
tool for phase determination and extension are discussed. 

Construction of a maximum-entropy map 

Consider a unit cell divided into n subcells, commonly 
called pixels, and let Pk be the number of electrons in the 
pixel located at position rk within the unit cell. We wish 
to maximize 

S = -- ~ Pk In Pk (1) 
k = l  

subject to 

and 

1-t 

= F ( 0 0 0 ) ,  
k=l 

I~.~pkexp(27rih3 "rk)l = IF(h3)l (3) 
k = l  

for j = 1, 2, . . . ,  m. Because the phase of F ( h j )  is 
in principle unknown, the actual entropy maximum is a 
function of the assumed phases (Sj61in, Prince, Svensson 
& Gilliland, 1991). However, because maximum entropy 
is not a necessary condition for a nonnegative distribution, 
any distribution that maximizes S for some set of phases 
is a possible density map. 

Of the various procedures for constrained optimization 
two are based on a partition of n-dimensional space into 
two mutually orthogonal subspaces of m (the constraint 
space) and n - r n  (the null space) dimensions, respectively. 
The algorithm described by Livesey & Skilling (1985) 
was (apparently) the primal method (Luenberger, 1984), 
in which a point is found in the null space that satisfies 
the constraints, a feasible point, and then a search is made 
entirely within the null space to find the maximum. It was 
shown previously (Prince, 1989b) that the conditions for 
a maximum in the null space for constant values of the 
constraint functions can be solved analytically, leading to a 
straightforward application of the dual method, in which 
a search is made in the constraint space for a feasible 
point. The problem of finding the constrained maximum 
of S is in fact equivalent to the problem of finding the 
unconstrained minimum of its dual function, which is 
defined by 

~ ( X )  = - -  Pk lnpk + E x 3 [ l F m ~ p ( h j '  x ) l  

k=l j=l 

-IFob~(hy)l] cos A~y, (4) 

where 

r$ 

Fmap = Epk(x)exp(2~rihj"  rk), (5) 
k = l  

and 
m 

pk(x)--exp[Exjcos(2rchy "rk -- ~j)]. (6) 
j=l 

x is a vector of parameters that is related to the Lagrange 
multipliers of the problem, although, as has been pointed 
out by Lemar6chal & Navaza (1991), the tree Lagrange 
multipliers are complex, whereas the elements of x are 
real. ~j  is a trial phase for F (h j ) ,  while the factor cos Aqoj 
reflects the fact that the phase of Fm~p(hj), although it is 
in practice close to ~j ,  is not necessarily equal to it. The 
gradient of the dual function is given by 

v<~(x)j : [IFm~p(hy,x)l- IFob~(hj)llcosA~j, (7) 

so that it vanishes when the constraints are satisfied. Its 
(2) Hessian matrix is 

H(x)  = C P ( x ) C  T, (S) 

where 

Cjk -- cos(2~'hj "rk -- ~j) ,  (9) 

and P is a diagonal matrix in which Pkk = pk(X). If 
the constraints are independent, C has full-row rank, and, 
because, from (6), Pk is positive for all k, H is everywhere 
positive definite (Stewart, 1973). ¢ (x )  therefore has a 
unique minimum unless some ~j  is impossible because of 
a Karle-Hauptman inequality, in which case the entropy 
is negatively infinite. 

A typical element of H(x )  is 

l= l  

× cos(2~'hk • rt - ~k), (10) 

which reduces to 

Hjk(X) = 2  pt(x){cos[2~-(hj + hk) • rt 
l=l 

+ cos[2~'(hj - hk)"  rl 

- ( ~ j  - ~k)]}. (11) 

Each term in this expression is itself a Fourier summation, 
so that 

1 
Hjk(x)  =5{IFmap(h5 + hk)l 

x cos[~+k -- (~j + ~k)] 

W Igmap(hj - hk)l 

x COS[~j-k -- (~j -- ~k)]}. ( 1 2 )  

Thus each element is a simple function of two amplitudes 
and four phases, all of which are available without further 
calculation if the Fourier transform of the map is computed 
using fast Fourier transform (FFT) routines. [Note that the 
expressions in (10), (11) and (12) are exact for the actual 
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starting map. Problems often occurring in discrete Fourier 
transforms because of an index that is close to or greater 
than half the number of grid points in that direction do 
not arise.] 

Because there is always a small number of reflections 
whose phases can be defined arbitrarily, in order to fix the 
origin and sometimes to choose an enantiomorph, choos- 
ing phases can be considered to be 'phase extension from 
a starting set' even when there is no a priori phase infor- 
marion. Therefore, the map constructed always contains 
prior knowledge, and it is necessary to consider how this 
prior knowledge can be incorporated into the construction 
of a maximum-entropy map containing additional infor- 
marion. In this work the prior map is represented by an 
image of the map in logarithmic space and two additional 
parameters, the logarithm of a scale factor, which is ad- 
justed so as to hold F(O00) constant, and the logarithm 
of a contrast factor. Let Ck be the value of the logarith- 
mic map in the kth pixel, and denote the logarithms of 
the contrast factor and the scale factor by x0 and Xm+l, 
respectively. It is convenient to scale the logarithmic map 
so that 0 _< Ck _< 1. Then the number of electrons in the 
kth pixel is 

pk(x) =exp(x0¢k + Xm+l) 
m 

× e x p [ ~  x,  cos/Z~rh,, rk - ~ / ] .  (13) 
j = l  

As additional reflections are added, Xm+l is adjusted to 
hold F(000) constant. The overall constraint used by 
Prince, Sjflin & Alenljung (1988) also holds the quantity 

E = ~2~. pkCk, (14) 
k=l 

the 'expected value' of ¢,  constant. To see the effect of 
this constraint, consider the fact that ¢ ( r )  is the sum of 
a Fourier series containing a finite number, p, of terms, 
which may be represented by 

P 

Ck = E at cos(2rrhl • rk -- cpz), (15) 
l= l  

whereas p(r) is represented by a general Fourier series. 
Because of the orthogonality of the trigonometric func- 
tions, however, all terms of the sum in (14) vanish except 
for those that also appear in the sum in (15), so that 

E = Z atlF(ht)l  c°s2(27rht "rk -- ~ot), (16) 
k=l  l=l 

which reduces to 

1 ~ atlS(hl)l .  (17) 
/=1 

If the phase of F(ht )  was equal to ~t and dlF(ht) l /dat  
was the same for all values of l, this would place a rigid 
constraint on the height of the origin peak of the Patterson 
function. However, neither of these conditions is true in 
general, so that, although the constraint does require the 
updated map to retain most of the features of the prior 
map, the phases of acentric reflections are allowed to drift, 
and some readjustment of the ratios of the I FI values also 
occurs. This constraint adds an additional row and cohmm 
to the Hessian matrix of the dual function, which takes 
the form 

Hoj(x) = ~ CkPk cos(27rhj • rk - ~oj). 
k=l  

(18) 

Implementation 
Because the constrained maximization of entropy corre- 
sponds to the unconstrained minimization of a dual func- 
tion whose Hessian matrix is everywhere positive definite, 
the problem can be solved numerically using well devel- 
oped procedures for nonlinear optimization. Many existing 
crystallographic least-squares programs are based on the 
Gauss-Newton algorithm, which is the iterative applica- 
tion of a local solution of the linear least-squares problem. 
Denoting the estimate of x in the nth iteration by xn and 
the gradient of ~(x)  at x,~ by gn, 

X n +  1 - -  X n - - [ H ( x n ) ] - l g n .  ( 1 9 )  

While this procedure works satisfactorily for many prob- 
lems, it has a number of defects, particularly for large 
problems. The Hessian matrix must be computed and in- 
verted in each iteration, and global convergence is not 
assured. Both computational efficiency and stability may 
be improved in various ways. Equation (19) has the form 
x,~+l = xn - sn, where sn is the solution of the matrix 
equation H(xn)sn = gn. Convergence can be assured by 
including a line search, so that xn+a = xn - ash,  where 
a is a positive scalar. Because H(xn)  is positive definite, 
its Cholesky factor, a lower triangular matrix L with pos- 
itive diagonal elements such that L L  T = H(xn) ,  exists, 
and Sn can be found by successive solution of the two 
triangular systems Lb = gn and LTsn = b. The effi- 
ciency of computation is further enhanced by making use 
of the fact that the elements of H(x)  are often not rapidly 
changing functions of x. If H were the Hessian matrix 
of a quad/atic function, the gradient would vanish at the 
point xn - sn. Since if(x) is not a quadratic function, the 
gradient will likely not vanish at xn - ash for any value 
of a. However, let Yn = gn+l - -  gn. Denoting H(xn)  by 
Hn, it can be shown (Gill, Murray & Wright, 1981) that 

T T 
Hn+l = H n  + Y n Y n / a Y n  Sn 

T T - HnsnS n H n / s  n H~sn (20) 
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is the Hessian matrix of a quadratic function that has the 
same values of the gradient at x .  and x . + l  as ~ (x ) .  It 
can be further shown that this correction formula, which 
is known as the Broyden-Fletcher-Goldfarb--Shanno 
(BFGS) update, has the property of hereditary positive 
definiteness. That is, if H ( x . )  is positive definite, then 
H(X.+l)  is also, provided a line search that is sufficient 
to assure convergence has been performed. 

The number of arithmetic operations required to com- 
pute L from H is proportional to m 3, where m is the size 
of the matrix, and the application of (20) would appear to 
require that this be done in every iteration. However, an 
.update applied directly to L that is equivalent to the ap- 
plication of the BFGS update to H can be computed with 
a number of operations that is proportional to m 2 (Gill, 
Murray & Wright, 1981; Dongarra, Bunch, Moler & Stew- 
art, 1979), so that the Cholesky factorization needs to be 
performed only once. As noted above, all of the infor- 
mation required to compute the initial elements of H are 
available when the prior map has been transformed using 
fast Fourier transform (FFT) routines, and FFT routines 
that reduce the computation by a factor of the order of the 
space group can be written using the methods described 
by Ten Eyck (1973). Using these techniques, a maximum- 
entropy map with 100 000 pixels in the asymmetric unit 
and fitting a block of 500 amplitudes can be constructed 
in less than 1 rain of CPU time on a MicroVAX 4000.* 
Fig. 1 is a flowchart of a program written to implement 
this ~ .  

Discussion 

• Application of the procedures described above will gener- 
ate an everywhere-positive density map with Fourier am- 
plitudes that agree with the observed data for an arbitrarily 
large set of reflections. This can in principle lead to ex- 
tension of phases from a sufficiently large starting set, but 
the question of how large is sufficient remains. In addi- 
tion, the analysis assumes implicitly that the data are on an 
absolute scale, or, equivalently, that the value of F(000) 
on the scale of the data is known. If there are values of 
the unitary structure factor, U(h)  = F(h)/F(O00), that 
are large enough for Harker-Kasper or Karle-Hauptman 
~inequalities to put restrictions on phases, the maximum- 
entropy procedure will give the same result, because an 
impossible phase will lead to a negatively infinite entropy. 
In an early study of the structure of L-glutamine (Cochran 
& Penfold, 1952; Woolfson, 1987) it was discovered af- 
terwards that the value of F(000) had been badly under- 
estimated, and that none of the inequality relationships 
used was valid! If F(000) had been correctly estimated, 

*MicroVAX 4000 is a registered trademark of the Digital Equipment 
Corporation. Trade names are identified in order to specify adequately 
the experimental procedure. Such identification does not imply recom- 
mendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the product is the best available for 
t h e ~ .  

the inequality relationships would have given no phase 
indications, because the maps computed using incorrect 
phases would still have been nonnegative. The entropies 
of the incorrect phase maps would, however, have been 
very low, and a maximum-entropy procedure would have 
led to the correct result. 

For macromolecular crystals the largest values of IF(h)] 
tend to be at most a few percent of F(000). Nevertheless, 
Sj61in, Prince, Svensson & Gilliland (1991) carried out a 
study, using the entropy as a figure of merit, that com- 
pared maps with various phase combinations and the ob- 
served amplitudes from the known (Gilliland, W'mbome, 
Nachman & Wlodawer, 1990) structure of recombinant 
bovine chymosin, and obtained a map with 1970 of the 
largest reflections that was strikingly similar to one com- 
puted with all data and phases from the refined structure. 
These authors also studied the effect of scale by testing 
the early stages of phase determination with assumed val- 
ues of F(000) that were a factor of two larger and a factor 
of two smaller than the correct value. They found that the 
correct estimation of a block of 16 signs for centric reflec- 
tions when the prior map contained only origin-defining 
reflections was rather sensitive to scale, but that the es- 
timation of the phases of acentric reflections when the 
prior map was made with 67 centric reflections was not 
seriously affected by scale. 

Maximum-entropy methods have been used to extend 
phases in fragment TR2C from bull testis calmodulin 
(Sj61in, Svensson, Prince & Sundell, 1990), but no macro- 
molecular structure has been solved ab initio by these 
methods. It is not clear that entropy is the best available, 

Add log prior, 
exponentiate, 
and compute 

entropy 

Compute 
correction to 
logarithmic 
map (FFT) 

1 
Compute new 
coefficients 

Compute 
structure 

factors (FFT) 

Compute 
and factor 
Hessian 

No 

No 

Apply L 
BFGS Yes 
update l- 

Fig. 1. Flow chart of an algorithm for finding the maximum-entropy map 
consistent with a set of observed amplitudes. 
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or even a particularly good, figure of merit. In the early 
stages of phase determination any set of phases produces 
an everywhere-positive map, but some figures of merit 
should be able to select phase sets that are more likely to 
be correct than others. A characteristic of entropy is that it 
is biased against maps that have high sharp peaks, which, 
because proteins are composed mostly of atoms with low 
atomic numbers, suggests that low-resolution maps should 
have high entropy. 

Gilmore, Bricogne & Bannister (1990) have proposed 
a likelihood function, which is based on the effect that the 
reflections in the set that is being tested have on others 
outside of that set. This function has been used effectively 
for determining the structures of molecules that are outside 
the range of conventional direct methods, but it depends on 
the existence of reflections with moderately large values of 
IF(h)I/F(O00), a condition that is not generally satisfied 
for crystals of proteins. 

Centric reflections, for which phases can have only one 
of two values, can be tested in blocks, using a fractional 
factorial design (Box, Hunter & Hunter, 1978), for exam- 
ple. The phases for acentric reflections must be chosen by 
a much more laborious, one-at-a-time procedure. The tol- 
erance on the agreement between observed and calculated 
amplitudes must be made tight enough so that the figure 
of merit changes much less within the acceptance region 
than it does when phases are changed, even though this 
implies a tighter tolerance than could be justified on the 
basis of the statistical precision of the observed values. 

Many stimulating discussions with D. M. Collins are 
gratefully acknowledged. Part of this work was performed 
with financial assistance from the Swedish Natural Sci- 
ences Research Council (NFR). 
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